Boletim técnico

DESEMPENHO AGRONÔMICO DE HÍBRIDOS DE MILHO NO CTECNO PARECIS, REGIÃO OESTE DE MATO GROSSO, SAFRA 2022/2023

Ed. 03 | AGOSTO/2023

AUTORES

Daniela Basso Facco

Eng. Agr. Ma. Pesquisadora em Solos do IAGRO-MT daniela.facco@iagromt.org.br

Rodrigo K. Hammerschmitt

Eng. Agr. Me. Pesquisador em Solos e Coordenador de Pesquisa do IAGRO-MT. rodrigo.knevitz@iagromt.org.br

Leandro Zancanaro

Eng. Agr. Me. Pesquisador e Consultor Raízes Consultoria leandrozancanaro@raízesconsultoria.com.br

leandrozancanaro@raizesconsuitoria.com.br

Táimon Semler

Eng. Agr. Pesquisador e Consultor na Raízes Consultoria.

taimonsemler@raizesconsultoria.com.br

Franklin W. V. de Oliveira

Eng. Agr. Especialista em Proteção de Plantas. Coordenador de Projetos de Defesa Agrícola da Aprosoja-MT.

franklin.oliveira@aprosoja.com.br

Gabriel Augusto da Silva

Eng. Agr. Analista de Projetos Defesa Agrícola da Aprosoja-MT. qabriel.silva@aprosoja.com.br

Jerusa Rech

Eng. Agr. Dra. Gerente de Defesa Agrícola da Aprosoja-MT. jerusa.rech@aprosoja.com.br

Karoline C. Barros

Eng. Agr. Ma. Analista de Projetos Defesa Agrícola da Aprosoja-MT. karoline.barros@aprosoja.com.br

1. INTRODUÇÃO

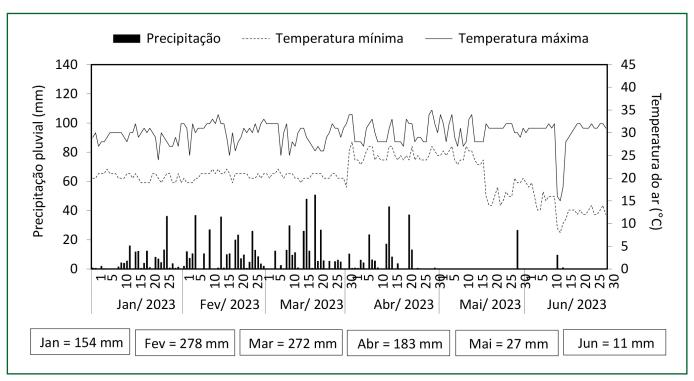
Na safra 2022/23, no estado de Mato Grosso, a área cultivada com milho foi de 7,4 milhões de hectares (IMEA, 2023). A maior parte do milho no estado é cultivado na segunda safra, onde a condição climática é o fator mais determinante para o sucesso da lavoura, uma vez que o término das chuvas anuais coincide com períodos de maior demanda hídrica do milho. Além disso, tem ocorrido a expansão do cultivo de milho em solos de textura arenosa, principalmente quando o preço da saca de milho no mercado é maior. Porém, quando há redução dos preços, o risco do cultivo é ainda maior. Dessa forma, a avaliação do desempenho agronômico de híbridos de milho em diferentes ambientes de produção é uma ferramenta fundamental para a tomada de decisão de manejo e posicionamento fito técnico.

Devido a grande proporção de área que apresentam solos de textura média e arenosa no estado de Mato Grosso, e as poucas informações técnicas sobre manejo nesses solos, a Aprosoja MT juntamente com o IAGRO, por meio do Centro Tecnológico Aprosoja MT (CTECNO), vem desenvolvendo pesquisas relacionadas ao manejo e desempenho de híbridos de milho nestes ambientes.

Nesse sentido, o objetivo deste trabalho foi avaliar o desempenho agronômico de 40 híbridos de milho cultivados em duas épocas de semeadura e em dois ambientes de produção (solo de textura média e arenosa) no município de Campo Novo do Parecis/MT.

2. MATERIAL E MÉTODOS

Quatro experimentos de híbridos de milho foram implantados no CTECNO, em Campo Novo do Parecis/MT (13° 36' S; 57° 50' O; 521 m de altitude), sendo cultivados em duas épocas de semeadura e em dois ambientes: solo de textura arenosa (10% de argila) e solo de textura média (32% de argila), totalizando 40 híbridos de milho em cada experimento. As



datas de semeadura ocorreram nos dias 01 e 23 de fevereiro de 2023 no solo de textura média, e nos dias 02 e 22 de fevereiro de 2023 no solo de textura arenosa, para a 1ª e 2ª época de semeadura, respectivamente.

Os dados pluviométricos, de temperatura e a precipitação mensal estão apresentados na **Figura 1**. O regime hídrico durante a condução dos experimentos implantados na 1ª época de semeadura (02/02/2023) se caracterizou por apresentar bom volume de chuvas, distribuídos de forma regular, sem limitação hídrica, com volume de chuvas acumulado de 744 mm e ocorrência de chuvas regulares até os 81 dias após a semeadura. Na 2ª época de semeadura (22/02/2023) as chuvas também foram regulares e bem distribuídas, com volume de chuvas acumulado de 536 mm e ocorrência de chuvas regulares até os 61 dias após a semeadura.

Figura 1. Valores diários de precipitação pluvial e de temperatura mínima e máxima do ar e precipitação mensal registrados entre os meses de janeiro/2023 a junho/2023 no Centro Tecnológico Aprosoja MT – CTECNO, em Campo Novo do Parecis/MT.

As sementes dos materiais testados nestes experimentos foram provenientes de doação de produtores rurais e de empresas detentoras. Os híbridos foram semeados com espaçamento entrelinhas de 0,45 m, com nove linhas de semeadura para cada material. Os híbridos de milho foram semeados em faixas, com parcelas de 356,4 m² em solo de textura média e 304,6 m² em solo de textura arenosa.

Na **Tabela 1** estão descritos os híbridos avaliados com suas respectivas biotecnologias, com informações sobre o foco de controle de pragas e a tolerância dos híbridos a herbicidas de cada traits.

Tabela 1. Híbridos de milho, tecnologias e proteínas Bt's presentes, pragas-alvo e tolerância a herbicidas dos híbridos de milho cultivados no Centro Tecnológico Aprosoja MT – CTECNO, em Campo Novo do Parecis/MT, safra 2022/23.

N°	Empresa	Híbrido	o do Parecis/MT, safra Tecnologia	Proteínas Bt´s	Pragas-alvo	Tolerância a herbicidas
1	AGROCERES	AG 8065 PRO3	VT PRO3®	Cry1A.105 + Cry2Ab + Cry3Bb1	Larva alfinete, lagarta do cartucho, broca do colmo, lagarta da espiga e lagarta elasmo	Glifosato
2	AGROCERES	AG 8480 PRO3	VT PRO3®	Cry1A.105 + Cry2Ab + Cry3Bb1	Larva alfinete, lagarta do cartucho, broca do colmo, lagarta da espiga e lagarta elasmo	Glifosato
3	AGROCERES	AG 8600 PRO4	VT PRO4®	Cry1A.105 + Cry2Ab2 + VIP3A + Cry3Bb1	Larva alfinete, lagarta do cartucho, broca do colmo, lagarta elasmo, lagarta da espiga e lagarta rosca	Glifosato
4	AGROCERES	AG 8700 PRO3	VT PRO3®	Cry1A.105 + Cry2Ab + Cry3Bb1	Larva alfinete, lagarta do cartucho, broca do colmo, lagarta da espiga e lagarta elasmo	Glifosato
5	AGROESTE	AS 1820 PRO3	VT PRO3®	Cry1A.105 + Cry2Ab + Cry3Bb1	Larva alfinete, lagarta do cartucho, broca do colmo, lagarta da espiga e lagarta elasmo	Glifosato
6	AGROESTE	AS 1822 PRO3	VT PRO3®	Cry1A.105 + Cry2Ab + Cry3Bb1	Larva alfinete, lagarta do cartucho, broca do colmo, lagarta da espiga e lagarta elasmo	Glifosato
7	BREVANT	B 2612 PWU	PowerCore® ULTRA	Cry1F, Cry1A.105, Cry2Ab2 e Vip3Aa20	Lagarta do cartucho, broca do colmo, lagarta da espiga, lagarta elasmo, lagarta rosca e lagarta preta das folhas	Glifosato e glufosinato de amônio
8	BREVANT	B 2701 PWU	PowerCore® ULTRA	Cry1F, Cry1A.105, Cry2Ab2 e Vip3Aa20	Lagarta do cartucho, broca do colmo, lagarta da espiga, lagarta elasmo, lagarta rosca e lagarta preta das folhas	Glifosato e glufosinato de amônio
9	BREVANT	B 2702 VYHR	Leptra® + RR	Cry1F, Cry1Ab e Vip3Aa20	Lagarta do cartucho, broca do colmo, lagarta da espiga, lagarta elasmo, lagarta rosca	Glifosato e glufosinato de amônio
10	BREVANT	B 2800 VYHR	Leptra® + RR	Cry1F, Cry1Ab e Vip3Aa20	Lagarta do cartucho, broca do colmo, lagarta da espiga, lagarta elasmo, lagarta rosca	Glifosato e glufosinato de amônio
11	BREVANT	B 2856 VYHR	Leptra® + RR	Cry1F, Cry1Ab e Vip3Aa20	Lagarta do cartucho, broca do colmo, lagarta da espiga, lagarta elasmo, lagarta rosca	Glifosato e glufosinato de amônio
12	DEKALB	DKB 255 PRO3	VT PRO3®	Cry1A.105 + Cry2Ab + Cry3Bb1	Larva alfinete, lagarta do cartucho, broca do colmo, lagarta da espiga e lagarta elasmo	Glifosato
13	DEKALB	DKB 360 PRO3	VT PRO3®	Cry1A.105 + Cry2Ab + Cry3Bb1	Larva alfinete, lagarta do cartucho, broca do colmo, lagarta da espiga e lagarta elasmo	Glifosato
14	DEKALB	DKB 380 PRO3	VT PRO3®	Cry1A.105 + Cry2Ab + Cry3Bb1	Larva alfinete, lagarta do cartucho, broca do colmo, lagarta da espiga e lagarta elasmo	Glifosato
15	FORSEED	FS 500 PWU	PowerCore® ULTRA	Cry1F, Cry1A.105, Cry2Ab2 e Vip3Aa20	Lagarta do cartucho, broca do colmo, lagarta da espiga, lagarta elasmo, lagarta rosca e lagarta preta das folhas	Glifosato e glufosinato de amônio
16	FORSEED	FS 533 PWU	PowerCore® ULTRA	Cry1F, Cry1A.105, Cry2Ab2 e Vip3Aa20	Lagarta do cartucho, broca do colmo, lagarta da espiga, lagarta elasmo, lagarta rosca e lagarta preta das folhas	Glifosato e glufosinato de amônio
17	FORSEED	FS 560 PWU	PowerCore® ULTRA	Cry1F, Cry1A.105, Cry2Ab2 e Vip3Aa20	Lagarta do cartucho, broca do colmo, lagarta da espiga, lagarta elasmo, lagarta rosca e lagarta preta das folhas	Glifosato e glufosinato de amônio
18	FORSEED	FS 564 PWU	PowerCore® ULTRA	Cry1F, Cry1A.105, Cry2Ab2 e Vip3Aa20	Lagarta do cartucho, broca do colmo, lagarta da espiga, lagarta elasmo, lagarta rosca e lagarta preta das folhas	Glifosato e glufosinato de amônio
19	FORSEED	FS 615 PWU	PowerCore® ULTRA	Cry1F, Cry1A.105, Cry2Ab2 e Vip3Aa20	Lagarta do cartucho, broca do colmo, lagarta da espiga, lagarta elasmo, lagarta rosca e lagarta preta das folhas	Glifosato e glufosinato de amônio
20	FORSEED	FS 633 PWU	PowerCore® ULTRA	Cry1F, Cry1A.105, Cry2Ab2 e Vip3Aa20	Lagarta do cartucho, broca do colmo, lagarta da espiga, lagarta elasmo, lagarta rosca e lagarta preta das folhas	Glifosato e glufosinato de amônio
21	KWS	K 7510 VIP3	Viptera® 3	Cry1Ab + Vip3A20	Lagarta do cartucho, broca do colmo, lagarta da espiga, lagarta elasmo, lagarta rosca	Glifosato e glufosinato de amônio
22	KWS	K 9606 VIP3	Viptera® 3	Cry1Ab + Vip3A20	Lagarta do cartucho, broca do colmo, lagarta da espiga, lagarta elasmo, lagarta rosca	Glifosato e glufosinato de amônio
23	LG SEMENTES	LG 36755 PRO4	VT PRO4®	Cry1A.105 + Cry2Ab2 + VIP3A + Cry3Bb1	Larva alfinete, lagarta do cartucho, broca do colmo, lagarta elasmo, lagarta da espiga e lagarta rosca	Glifosato
24	LG SEMENTES	LG 36790 PRO3	VT PRO3®	Cry1A.105 + Cry2Ab + Cry3Bb1	Larva alfinete, lagarta do cartucho, broca do colmo, lagarta da espiga e lagarta elasmo	Glifosato
25	MORGAN	MG 447 PWU	PowerCore® ULTRA	Cry1F, Cry1A.105, Cry2Ab2 e Vip3Aa20	Lagarta do cartucho, broca do colmo, lagarta da espiga, lagarta elasmo, lagarta rosca e lagarta preta das folhas	Glifosato e glufosinato de amônio
26	MORGAN	MG 540 PWU	PowerCore® ULTRA	Cry1F, Cry1A.105, Cry2Ab2 e Vip3Aa20	Lagarta do cartucho, broca do colmo, lagarta da espiga, lagarta elasmo, lagarta rosca e lagarta preta das folhas	Glifosato e glufosinato de amônio
27	MORGAN	MG 580 PWU	PowerCore® ULTRA	Cry1F, Cry1A.105, Cry2Ab2 e Vip3Aa20	Lagarta do cartucho, broca do colmo, lagarta da espiga, lagarta elasmo, lagarta rosca e lagarta preta das folhas	Glifosato e glufosinato de amônio
28	MORGAN	MG 597 PWU	PowerCore® ULTRA	Cry1F, Cry1A.105, Cry2Ab2 e Vip3Aa20	Lagarta do cartucho, broca do colmo, lagarta da espiga, lagarta elasmo, lagarta rosca e lagarta preta das folhas	Glifosato e glufosinato de amônio
29	MORGAN	MG 600 PWU	PowerCore® ULTRA	Cry1F, Cry1A.105, Cry2Ab2 e Vip3Aa20	Lagarta do cartucho, broca do colmo, lagarta da espiga, lagarta elasmo, lagarta rosca e lagarta preta das folhas	Glifosato e glufosinato de amônio
30	MORGAN	MG 711 PWU	PowerCore® ULTRA	Cry1F, Cry1A.105, Cry2Ab2 e Vip3Aa20	Lagarta do cartucho, broca do colmo, lagarta da espiga, lagarta elasmo, lagarta rosca e lagarta preta das folhas	Glifosato e glufosinato de amônio
31	PIONEER	30F35 VYHR	Leptra® + RR	Cry1F, Cry1Ab e Vip3Aa20	Lagarta do cartucho, broca do colmo, lagarta da espiga, lagarta elasmo, lagarta rosca	Glifosato e glufosinato de amônio
32	PIONNER	P 3707 VYH	Leptra®	Cry1F, Cry1Ab e Vip3Aa20	Lagarta do cartucho, broca do colmo, lagarta da espiga, lagarta elasmo, lagarta rosca	Glufosinato de amônio
33	PIONEER	P 3845 VYHR	Leptra® + RR	Cry1F, Cry1Ab e Vip3Aa20	Lagarta do cartucho, broca do colmo, lagarta da espiga, lagarta elasmo, lagarta rosca	Glifosato e glufosinato de amônio
34	PIONEER	P 3858 PWU	PowerCore® ULTRA	Cry1F, Cry1A.105, Cry2Ab2 e Vip3Aa20	Lagarta do cartucho, broca do colmo, lagarta da espiga, lagarta elasmo, lagarta rosca e lagarta preta das folhas	Glifosato e glufosinato de amônio
35	PIONNER	P 3898	-	Convencional	Convencional	Convencional Clifosato e glufosinato
36	SEMPRE	20A38 VIP3	Viptera® 3	Cry1Ab + Vip3A20	Lagarta do cartucho, broca do colmo, lagarta da espiga, lagarta elasmo, lagarta rosca	Glifosato e glufosinato de amônio
00		NK 467 VIP3	Viptera® 3	Cry1Ab + Vip3A20	Lagarta do cartucho, broca do colmo, lagarta da espiga, lagarta elasmo, lagarta rosca	Glifosato e glufosinato de amônio
37	SYNGENTA	1410 101 111 0	·			
	SYNGENTA SYNGENTA	NK 506 VIP3	Viptera® 3	Cry1Ab + Vip3A20	Lagarta do cartucho, broca do colmo, lagarta da espiga, lagarta elasmo, lagarta rosca	Glifosato e glufosinato de amônio
37			·	Cry1Ab + Vip3A20 Cry1Ab + Vip3A20	Lagarta do cartucho, broca do colmo, lagarta da	

Os resultados das análises de solo nas áreas onde os experimentos de híbridos de milho foram instalados são apresentados na **Tabela 2**. A adubação foi realizada de forma igual para todos os experimentos. Foram aplicados 108 kg/ha de monoamônio fosfato - MAP (11-52-00) no sulco de semeadura, 102 kg/ha de cloreto de potássio - KCl (60% de K₂O) e 203 kg/ha de sulfato de amônio (21% de N e 22% de S) a lanço em superfície no dia da semeadura. No estágio fenológico V3/V4 foi realizada a aplicação de 185 kg/ha de ureia (46% de N) em superfície. Os micronutrientes boro (B), zinco (Zn) e manganês (Mn) foram supridos via foliar no estágio fenológico V4.

Tabela 2. Resultados da análise do solo das camadas 0-10, 10-20 e 20-40 cm de profundidade dos experimentos de híbridos de milho realizados em solo de textura média e arenosa, em duas épocas de semeadura. CTECNO/Campo Novo do Parecis-MT, safra 2022/23.

NOVO do Falcois IVII, Salia 2022/20.											
Camada de solo	pH CaCl _s /1	Р	K	Ca	Mg	Al	H+AI	стс	MOS	V	m
(cm)	pri CaCi ₂	mg	ı/dm³			cmol _c /dı	m³		g/dm³	% -	
			s	olo de 1	textura r	nédia - 1	lª época				
0-10	4,8	29,5	83,1	2,7	0,6	0,0	3,8	7,3	26,0	48,2	0,0
10-20	4,8	24,5	58,7	2,4	0,5	0,0	3,6	6,7	19,8	45,5	0,0
20-40	4,9	3,9	48,9	1,6	0,3	0,0	2,7	4,6	12,9	41,6	0,0
			s	olo de 1	textura r	nédia - 2	2ª época				
0-10	4,8	27,8	82,1	3,1	0,7	0,0	3,8	7,7	28,4	50,9	0,0
10-20	4,7	23,8	53,8	2,2	0,4	0,0	3,7	6,5	19,8	43,3	0,0
20-40	4,7	4,6	39,1	1,5	0,2	0,0	3,1	4,9	12,4	36,8	0,0
			So	lo de te	extura aı	enosa -	1ª época	l			
0-10	5,3	59,6	37,1	2,5	0,9	0,0	2,2	5,7	19,6	61,3	0,0
10-20	5,2	37,4	19,6	2,1	0,5	0,0	2,1	4,8	13,6	55,9	0,0
20-40	5,1	2,6	11,7	1,1	0,3	0,0	1,8	3,2	7,8	44,9	0,0
			So	lo de te	extura aı	enosa -	2ª época	l			
0-10	5,1	46,2	34,2	2,2	0,8	0,0	2,4	5,5	19,4	56,6	0,0
10-20	5,0	34,2	17,6	1,7	0,5	0,0	2,6	4,7	12,5	46,0	0,0
20-40	4,8	3,7	11,7	0,9	0,3	0,0	2,0	3,2	6,7	38,2	0,0

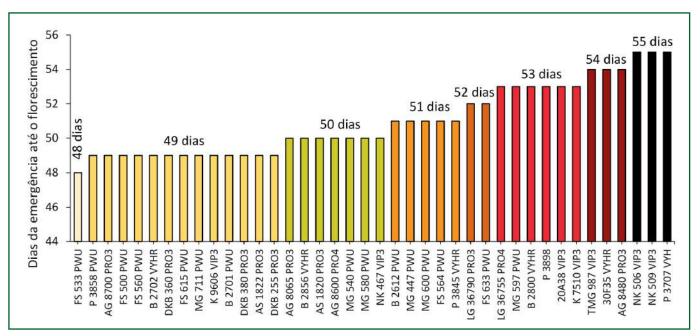
^{1/} pH determinado em CaCl₂; P e K extraídos por Mehlich-1; Ca, Mg e Al extraídos por cloreto de potássio (1 mol L⁻¹); H+Al extraído por acetato de cálcio a pH= 7; MOS (matéria orgânica do solo) extraído por bicromato de potássio.

Antecedendo o cultivo dos experimentos, durante o período de safra, foi cultivado *Brachiaria ruziziensis*, com densidade de 15 kg/ha. Na área com solo de textura arenosa a produção de massa seca da braquiária foi de 3,3 t/ha e na área de solo de textura média a produção de massa seca de 5,8 t/ha.

As pragas foram controladas de acordo com o nível de dano econômico e foram realizadas aplicações de herbicidas pré e pós-emergentes. Foram realizadas aplicações de fungicidas de acordo com a **Tabela 3**.

Tabela 3. Programa de fungicidas usados para controle de doenças nos experimentos de híbridos de milho realizados no Centro Tecnológico Aprosoja MT – CTECNO, em Campo Novo do Parecis/MT, safra 2022/23.

Aplicação	Data	DAS/1	Fungicidas	Dose (L p.c./ha)
		1ª época de se	emeadura	
1 ^{a/2}	09/03/2023	35	Azimut®/4	0,50
2 ^{a/3}	25/03/2023	51	Fox® Xpro/5	0,45
		2ª época de se	emeadura	
1 ^{a/2}	30/03/2023	36	Azimut [®]	0,50
2 ^{a/3}	13/04/2023	50	Fox® Xpro	0,45


¹/DAS= dias após semeadura; ²/Adicionado Assist (0,3 L/ha); ³/Adicionado Aureo (0,2 L/ha); ⁴/I.a. Azoxistrobina e Tebuconazol; ⁵/I.a. Bixafem, Protioconazol e Trifloxistrobina.

Foram avaliadas a altura de plantas, altura de inserção da espiga, diâmetro de colmo, peso de mil grãos (PMG), produtividade do milho, população de plantas finais, incidência de enfezamento e classificação de grãos do milho. Foram avaliados o número de dias entre a emergência e o florescimento dos híbridos de milho (emissão do estilo-estigma).

Para avaliação de altura de plantas, altura de inserção da espiga e diâmetro de colmo foram realizadas medidas aleatórias de 20 plantas por parcela. A produtividade do milho foi obtida pela colheita manual de quatro pontos por parcela, compostos por duas linhas com cinco metros de comprimento, totalizando 4,5 m² por ponto coletado. O PMG foi realizado pela contagem do número de grãos e posterior pesagem. A produtividade e o PMG foram corrigidos para umidade de 13%. A população de plantas foi estimada pela contagem do número de plantas presentes na parcela útil de colheita. A incidência de enfezamento foi estimada pela contagem do número de plantas com sintomas visuais de enfezamento e posterior estimativa da porcentagem de plantas com sintomas. A classificação de grãos foi realizada de acordo com a Instrução Normativa nº 60/2011, que estabelece o padrão oficial de classificação de grãos de milho.

3. RESULTADOS

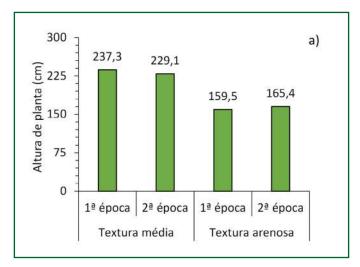
Os resultados do monitoramento para avaliação do número de dias entre a emergência e o florescimento dos híbridos de milho estão apresentados na **Figura 2**. A duração do período variou de 48 a 55 dias entre os híbridos mais precoces e os mais tardios.

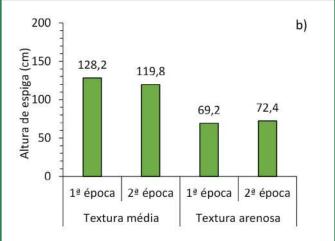
Figura 2. Número de dias entre a emergência e o florescimento dos híbridos de milho cultivados nos experimentos no Centro Tecnológico Aprosoja MT – CTECNO, em Campo Novo do Parecis/MT, safra 2022/23.

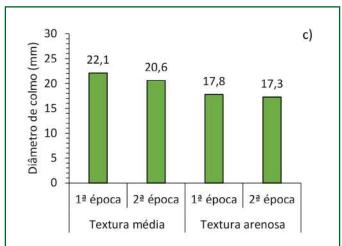
Os resultados de altura de planta (AP), altura de inserção da espiga (AE), diâmetro de colmo (DC) e peso de mil grãos (PMG) estão apresentados na **Tabela 4**. No experimento de competição de híbridos de milho semeados em solo de textura média – 1ª época a altura de plantas variou de 212,3 cm (MG 540 PWU) a 266,6 cm (K 7510 VIP3), a altura de espiga variou de 111,4 cm (MG 540 PWU) a 145,3 cm (K 7510 VIP3), o diâmetro de colmo variou de 20,1 mm (DKB 255 PRO3) a 26,0 mm (TMG 987 VIP3) e o peso de mil grãos variou de 282,1 g (AS 1820 PRO3) a 402,5 g (TMG 987 VIP3). Quando semeado em solo de mesma textura, mas em janela de semeadura mais avançada (2ª época) a altura de plantas variou de 201,2 cm (MG 600 PWU) a 257,5 cm (P 3845 VYHR), a altura de espiga variou de 104,2 cm (DKB 255 PRO3) a 139,5 cm (K 7510 VIP3), o diâmetro de colmo variou de 18,3 mm (P 3898) a 23,0 mm (TMG 987 VIP3) e o peso de mil grãos variou de 225,7 g (B 2856 VYHR) a 369,3 g (DKB 380 PRO3).

No experimento de competição de híbridos de milho semeado em solo de textura arenosa – 1ª época a altura de plantas variou de 140,1 cm (MG 600 PWU) a 183,1 cm (K 7510 VIP3), a altura de espiga variou de 56,5 cm (B 2800 VYHR) a 83,4 cm (B 2612 PWU), o diâmetro de colmo variou de 15,8 mm (20A38 VIP3) a 19,6 mm (TMG 987 VIP3) e o peso de mil grãos variou de 187,4 g (20A38 VIP3) a 307,4 g (TMG 987 VIP3). Quando semeado em solo de mesma textura, mas em janela de semeadura mais avançada (2ª época) a altura de plantas variou de 138,2 cm (FS 564 PWU) a 190,5 cm (MG 711 PWU), a altura de espiga variou de 58,4 cm (NK 506 VIP3) a 96,5 cm (MG 711 PWU), o diâmetro de colmo variou de 15,4 mm (DKB 360 PRO3) a 22,2 mm (AS 1820 PRO3) e o peso de mil grãos variou de 158,2 g (20A38 VIP3) a 289,5 g (DKB 380 PRO3).

Tabela 4. Altura de planta (AP), altura de inserção da espiga (AE), diâmetro de colmo (DC) e peso de mil grãos (PMG) dos híbridos de milho cultivados em solo de textura média e arenosa em duas épocas de semeadura. CTECNO/Campo Novo do Parecis-MT, safra 2022/23.


toxttare					lo de tex							Solo	de text	ura aren	iosa		
Ν°	Híbrido		1ª é _l	ooca			2ª é _l	poca			1ª é _l	ooca			2ª é _l	poca	
	Hibrido	AP (cm)	AE (cm)	DC (mm)	PMG (g)												
1	AG 8065 PRO3	230,9	125,3	20,1	345,3	237,9	119,2	20,7	324,1	164,6	71,4	17,3	257,6	164,7	69,8	16,1	205,1
2	AG 8480 PRO3	239,6	131,0	21,5	342,8	229,4	115,2	21,4	320,5	163,3	72,1	17,3	255,2	159,9	67,5	16,6	183,1
3	AG 8600 PRO4	254,9	132,1	22,3	357,2	243,4	125,1	20,4	344,2	167,5	67,0	17,4	222,4	182,7	77,3	18,2	205,5
4	AG 8700 PRO3	252,2	135,2	22,4	360,4	243,7	122,6	21,8	328,3	168,3	74,9	18,0	234,8	181,6	79,7	18,1	204,4
5	AS 1820 PRO3	247,8	133,1	22,3	282,1	236,7	124,1	20,5	273,5	160,1	67,7	17,2	205,1	180,9	82,3	22,2	228,2
6	AS 1822 PRO3	236,8	123,5	21,6	308,5	228,2	114,8	20,6	290,2	159,8	67,4	16,3	221,3	167,8	70,4	17,1	200,4
7	B 2612 PWU	231,2	127,2	20,7	315,4	235,3	126,7	22,6	297,3	166,6	83,4	18,5	237,5	164,6	79,4	18,5	234,7
8	B 2701 PWU	221,1	116,5	22,5	351,6	211,9	106,9	21,2	317,4	147,9	59,0	18,6	231,9	160,4	68,2	17,7	209,1
9	B 2702 VYHR	231,4	118,6	20,9	348,8	223,2	111,9	19,0	330,0	149,8	57,2	18,5	253,1	163,8	64,7	16,9	239,6
10	B 2800 VYHR	233,3	127,1	21,5	321,1	221,1	115,4	19,5	264,2	154,5	56,5	17,8	221,5	170,1	78,7	18,6	239,4
11	B 2856 VYHR	240,7	127,1	23,1	290,6	243,1	129,0	21,1	225,7	160,8	62,5	19,0	196,0	174,0	76,6	18,1	202,1
12	DKB 255 PRO3	225,5	113,0	20,1	337,6	209,3	104,2	18,9	326,4	151,9	69,6	17,5	280,4	155,9	63,8	16,6	230,9
13	DKB 360 PRO3	254,3	134,5	20,7	339,7	244,0	122,9	19,5	293,4	171,6	78,3	16,1	291,8	178,1	71,7	15,4	228,3
14	DKB 380 PRO3	240,1	119,9	21,5	380,0	237,9	118,0	21,4	369,3	158,9	61,8	17,9	282,4	171,6	69,7	17,8	289,5
15	FS 500 PWU	227,1	120,5	23,0	341,7	226,8	116,3	21,4	309,1	162,5	68,5	18,0	276,6	170,6	75,0	17,8	245,5
16	FS 533 PWU	227,5	131,4	22,0	313,8	214,7	111,7	20,4	283,2	159,0	72,1	16,8	242,6	163,2	75,6	18,2	245,2
17	FS 560 PWU	237,1	135,1	21,5	330,1	226,0	119,3	20,4	321,8	157,0	67,5	17,7	250,4	177,5	83,9	18,1	243,5
18	FS 564 PWU	220,2	122,7	23,3	319,3	203,7	107,7	20,1	304,6	144,6	70,8	19,5	251,5	138,2	61,8	17,4	198,3
19	FS 615 PWU	234,6	129,1	22,9	322,9	218,3	113,3	19,7	285,6	153,8	65,7	16,8	198,7	174,2	77,1	18,9	230,1
20	FS 633 PWU	220,0	122,3	21,3	325,7	215,0	114,1	20,4	290,1	160,6	74,6	17,7	270,8	150,9	66,4	16,7	211,4
21	K 7510 VIP3	266,6	145,3	21,9	330,1	257,0	139,5	19,8	330,6	183,1	82,6	18,2	255,4	172,6	72,6	16,3	217,0
22	K 9606 VIP3	243,4	125,5	21,6	341,6	238,8	120,4	19,8	335,5	171,7	71,4	18,7	286,5	169,1	71,6	17,0	236,7
23	LG 36755 PRO4	245,0	130,9	22,2	346,1	232,7	119,1	21,6	307,6	155,6	71,9	17,0	207,6	164,8	74,3	17,9	208,8
24	LG 36790 PRO3	244,7	126,7	21,1	336,8	231,3	117,7	18,5	320,6	163,8	69,3	17,6	273,7	158,7	64,3	15,4	228,2
25	MG 447 PWU	239,6	138,7	23,9	353,3	223,3	123,5	21,1	318,7	167,6	82,0	19,2	264,5	160,9	75,3	18,1	216,5
26	MG 540 PWU	212,3	111,4	20,3	298,7	203,5	106,5	20,2	282,9	154,7	68,7	17,6	235,9	156,1	64,2	16,7	193,3
27	MG 580 PWU	216,8	126,7	23,7	340,3	221,8	125,4	21,2	311,1	152,9	72,4	19,0	255,7	163,2	74,4	18,3	236,7
28	MG 597 PWU	244,5	137,3	23,5	302,4	230,6	124,7	21,4	303,9	169,3	80,1	18,3	226,8	169,7	73,3	16,7	215,2
29	MG 600 PWU	220,5	127,6	22,5	331,9	201,2	111,4	20,1	283,1	140,1	61,8	17,2	196,5	146,3	68,4	16,8	190,9
30	MG 711 PWU	233,4	129,6	21,0	304,1	233,9	133,0	19,9	300,8	166,7	76,5	16,5	234,6	190,5	96,5	18,0	220,8
31	30F35 VYHR	221,3	118,2	23,5	298,8	209,6	113,0	20,7	271,1	144,2	68,1	18,4	244,9	144,5	65,9	17,3	232,2
32	P 3707 VYH	245,2	134,3	20,7	318,8	232,0	123,6	19,7	273,7	146,2	59,3	17,0	246,5	160,2	70,8	16,4	246,7
33	P 3845 VYHR	261,1	141,0	22,4	369,6	257,5	129,4	21,2	328,6	155,6	60,9	18,8	238,9	184,8	81,8	19,1	280,9
34	P 3858 PWU	220,2	122,2	21,1	298,7	210,9	113,4	20,7	289,6	159,0	72,1	18,0	245,1	161,0	75,9	16,8	200,8
35	P 3898	227,0	120,2	21,0	332,8	227,7	113,1	18,3	301,4	156,1	59,0	16,9	222,5	166,9	71,7	15,6	190,9
36	20A38 VIP3	258,4	140,7	21,3	303,2	239,2	127,1	18,9	282,8	151,8	62,7	15,8	187,4	150,8	60,9	15,6	158,2
37	NK 467 VIP3	245,6	132,0	24,0	322,8	235,1	123,3	21,5	305,2	168,0	75,1	17,3	238,8	159,3	69,2	16,4	169,6
38	NK 506 VIP3	250,1	129,7	23,2	373,0	244,0	126,1	22,9	322,6	164,3	70,5	18,8	302,5	154,4	58,4	16,5	192,7
39	NK 509 VIP3	253,8	138,3	25,1	370,1	248,6	136,7	21,9	293,2	163,6	69,3	18,6	242,7	167,2	73,0	16,6	208,4
40	TMG 987 VIP3	237,9	126,4	26,0	402,5	236,1	129,1	23,0	347,1	163,2	69,3	19,6	307,4	164,0	73,6	17,5	232,0





Nestes experimentos, a variação nas características das plantas é atribuída as características dos materiais testados e a condição de semeadura, seja pela variação na textura do solo ou pela época de semeadura. De modo geral, se observa redução na AP, AE, DC e PMG com o avançar da época de semeadura, e com a redução do teor de argila do solo (**Figura 3**).

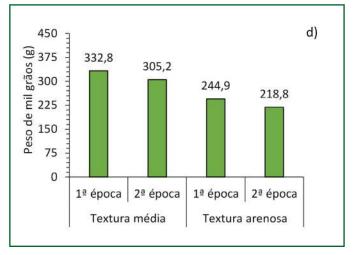


Figura 3. Altura de planta (a), altura de espiga (b), diâmetro de colmo (c) e peso de mil grãos (d) médio dos híbridos de milho cultivados em diferentes épocas de semeadura e texturas de solo. CTECNO/Campo Novo do Parecis-MT, safra 2022/23.

A incidência de enfezamentos foi avaliada por meio da identificação visual e contagem do número de plantas com sintomas de enfezamento (**Figura 4**) na área útil da parcela e estimativa da percentagem de plantas com sintomas de enfezamento. Vale destacar que esta é uma avaliação realizada para verificar a tolerância dos híbridos de milho ao complexo de enfezamento. Entretanto, alguns híbridos podem não expressar sintomas visuais de enfezamento, mas apresentar redução de produtividade, enquanto outros podem expressar sintomas, mas não reduzir produtividade. No experimento não foram observadas plantas com tombamento no final do ciclo.

Figura 4. Plantas de milho com sintomas de enfezamento. CTECNO/Campo Novo do Parecis-MT, safra 2022/23.

A incidência de enfezamento estimada nos híbridos de milho nos diferentes experimentos pode ser observada na **Tabela 5**. No experimento de híbridos de milho cultivado em solo de textura média – 1ª época de semeadura a maior incidência de enfezamento foi observada no híbrido K 9606 VIP3 (25,9%), enquanto os híbridos DKB 360 PRO3, MG 711 PWU, MG 597 PWU, NK 509 VIP3, NK 506 VIP, AG 8480 PRO3 e 20A38 VIP3 não apresentaram plantas com sintomas visuais de enfezamento. Na 2ª época de semeadura em solo de textura média a maior incidência de enfezamento ocorreu no híbrido B 2856 VYHR (44,6%), enquanto os híbridos FS 500 PWU e DKB 255 PRO3 não apresentaram plantas com sintomas visuais de enfezamento.

Tabela 5. Incidência de enfezamento nos híbridos de milho cultivadas em solo de textura média e arenosa e em duas épocas de semeadura. CTECNO/Campo Novo do Parecis-MT, safra 2022/23.

NIO.	Llúla vi al a	Solo de tex	xtura média	Solo de textura arenosa			
Ν°	Híbrido	1ª época	2ª época	1ª época	2ª época		
			Incidência de en	fezamento (%)			
1	AG 8065 PRO3	8,1	16,3	7,1	26,5		
2	AG 8480 PRO3	0,0	8,9	3,6	28,1		
3	AG 8600 PRO4	14,9	13,1	7,3	29,7		
4	AG 8700 PRO3	9,1	7,3	9,0	31,5		
5	AS 1820 PRO3	1,8	1,8	11,1	19,5		
6	AS 1822 PRO3	3,6	11,9	9,1	23,2		
7	B 2612 PWU	5,8	29,8	13,4	22,8		
8	B 2701 PWU	9,0	23,5	9,7	8,4		
9	B 2702 VYHR	6,2	23,2	11,8	23,2		
10	B 2800 VYHR	1,8	10,8	10,9	13,3		
11	B 2856 VYHR	19,6	44,6	25,6	15,5		
12	DKB 255 PRO3	2,6	0,0	9,7	22,5		
13	DKB 360 PRO3	0,0	8,1	10,8	22,6		
14	DKB 380 PRO3	10,5	21,4	14,4	25,3		
15	FS 500 PWU	4,0	0,0	12,7	11,0		
16	FS 533 PWU	5,6	15,5	22,9	11,2		
17	FS 560 PWU	2,7	17,4	8,0	10,1		
18	FS 564 PWU	5,8	38,8	11,4	12,1		
19	FS 615 PWU	6,1	37,8	12,5	16,6		
20	FS 633 PWU	3,8	18,1	4,7	10,8		
21	K 7510 VIP3	8,2	18,9	5,4	22,8		
22	K 9606 VIP3	25,9	31,6	33,0	26,1		
23	LG 36755 PRO4	7,1	18,9	12,8	29,4		
24	LG 36790 PRO3	4,6	15,3	4,6	18,9		
25	MG 447 PWU	1,9	14,5	7,7	12,7		
26	MG 540 PWU	2,1	10,1	2,7	13,1		
27	MG 580 PWU	9,6	18,1	10,7	16,0		
28	MG 597 PWU	0,0	9,7	12,7	18,5		
29	MG 600 PWU	8,0	17,2	12,5	24,5		
30	MG 711 PWU	0,0	19,2	8,3	11,7		
31	30F35 VYHR	10,7	18,5	22,5	14,3		
32	P 3707 VYH	11,6	11,6	4,7	14,6		
33	P 3845 VYHR	3,5	8,8	15,1	13,5		
34	P 3858 PWU	7,2	37,6	13,7	14,5		
35	P 3898	13,7	10,0	8,6	23,1		
36	20A38 VIP3	0,0	5,4	6,3	25,5		
37	NK 467 VIP3	8,7	14,5	8,7	26,9		
38	NK 506 VIP3	0,0	15,5	11,5	23,8		
39	NK 509 VIP3	0,0	3,6	8,7	11,2		
40	TMG 987 VIP3	10,7	3,1	9,9	23,8		

No experimento de híbridos de milho cultivado em solo de textura arenosa – 1ª época de semeadura a maior incidência de enfezamento também foi observada no híbrido K 9606 VIP3 (33,0 %) e a menor incidência de enfezamento foi observada no híbrido MG 540 PWU (2,7 %). Na 2ª época de semeadura em solo de textura arenosa a maior incidência de enfezamento ocorreu no híbrido AG 8700 PRO3 (31,5 %) e a menor incidência de enfezamento foi observada no híbrido B 2701 PWU (8,4 %).

Vale destacar que na 1ª época de semeadura dos experimentos havia menor pressão de cigarrinha do milho, consequentemente foi observado menor incidência de sintomas de enfezamento nos híbridos de milho. Na 2ª época de semeadura, a pressão de cigarrinha era maior devido aos efeitos de reprodução e migração da praga, consequentemente foi observado maior incidência de enfezamento.

A produtividade e a população de plantas de milho dos experimentos estão apresentadas na **Tabela 6**. As produtividades apresentadas a seguir já estão corrigidas de acordo com a classificação de grãos. As populações usadas seguiram as recomendações de cada híbrido de milho, com variação de acordo com a regulagem da semeadora. A condição climática da segunda safra 2022/23 possibilitou a obtenção de altas produtividades, especialmente no solo de textura média, uma vez que houve bom volume de chuvas e com distribuição regular.

Tabela 6. Produtividade e população de plantas dos híbridos de milho cultivados em solo de textura média e arenosa e em duas épocas de semeadura. CTECNO/Campo Novo do Parecis-MT, safra 2022/23.

			Solo de tex	tura m <u>édi</u> a		Solo de textura arenosa					
Nº	Híbrido	1ª ép	oca	2ª é	poca	1ª ép	оса	2ª época			
	morido	População (plantas/ha)	Produtividade (sc/ha)	População (plantas/ha)	Produtividade (sc/ha)	População (plantas/ha)	Produtividade (sc/ha)	População (plantas/ha)	Produtividade (sc/ha)		
1	AG 8065 PRO3	61.111	193,6	61.111	187,2	62.778	81,9	57.222	55,6		
2	AG 8480 PRO3	61.111	172,6	62.222	170,8	62.222	96,2	57.222	56,0		
3	AG 8600 PRO4	59.444	182,4	58.889	173,7	61.111	61,3	55.000	44,4		
4	AG 8700 PRO3	61.111	186,4	61.111	175,8	61.667	79,5	61.667	70,8		
5	AS 1820 PRO3	62.222	195,7	62.222	191,3	60.555	75,3	60.000	89,6		
6	AS 1822 PRO3	61.667	193,4	61.111	177,0	61.111	75,6	57.778	59,2		
7	B 2612 PWU	57.222	158,0	57.778	180,4	57.778	104,0	56.111	89,8		
8	B 2701 PWU	61.667	186,9	61.667	171,6	63.333	71,4	59.444	62,2		
9	B 2702 VYHR	62.222	168,8	62.222	160,4	61.111	69,1	60.555	66,9		
10	B 2800 VYHR	63.333	194,5	61.667	172,9	61.111	49,4	57.778	74,6		
11	B 2856 VYHR	62.222	177,3	62.222	154,8	62.778	77,5	61.111	84,8		
12	DKB 255 PRO3	63.333	185,2	60.555	169,8	62.222	90,9	57.778	68,2		
13	DKB 360 PRO3	62.222	199,2	61.667	191,2	62.778	94,5	59.444	64,7		
14	DKB 380 PRO3	58.333	176,6	57.222	177,7	57.778	93,0	52.778	84,1		
15	FS 500 PWU	56.667	173,7	57.222	167,4	56.667	105,2	56.667	93,2		
16	FS 533 PWU	60.555	174,9	60.555	154,8	61.111	88,9	59.444	99,1		
17	FS 560 PWU	62.222	183,8	61.111	177,8	62.778	96,5	60.555	93,5		
18	FS 564 PWU	58.333	197,6	57.222	166,0	58.889	116,7	55.000	82,9		
19	FS 615 PWU	54.444	182,2	57.222	132,2	57.778	59,2	56.111	90,5		
20	FS 633 PWU	58.333	159,4	58.333	151,7	62.222	85,7	56.667	60,8		
21	K 7510 VIP3	60.555	187,3	59.444	175,1	61.111	86,8	61.111	57,3		
22	K 9606 VIP3	62.222	175,8	61.667	170,7	62.222	103,5	61.667	80,5		
23	LG 36755 PRO4	62.222	188,1	61.667	168,9	61.111	65,6	60.555	61,6		
24	LG 36790 PRO3	59.444	196,1	61.667	181,0	60.000	91,2	58.889	56,8		
25	MG 447 PWU	56.667	188,0	57.222	180,7	57.222	111,5	56.667	69,3		
26	MG 540 PWU	58.333	185,7	60.555	198,6	57.778	99,3	55.000	80,7		
27	MG 580 PWU	52.222	171,9	52.222	174,6	51.667	86,3	52.222	63,7		
28	MG 597 PWU	57.222	185,1	63.333	155,6	62.222	98,0	60.000	70,4		
29	MG 600 PWU	62.222	180,0	61.111	144,3	62.778	66,3	58.889	62,3		
30	MG 711 PWU	57.222	189,9	57.778	178,8	53.333	85,8	57.222	75,1		
31	30F35 VYHR	62.222	190,5	60.000	150,4	61.667	94,0	62.222	84,7		
32	P 3707 VYH	62.222	174,8	62.222	169,2	60.000	62,4	61.111	74,1		
33	P 3845 VYHR	63.333	194,0	62.778	182,1	62.778	66,9	57.778	89,0		
34	P 3858 PWU	61.667	189,8	60.555	177,8	61.111	111,6	61.667	73,0		
35	P 3898	61.111	187,0	61.111	171,6	65.000	71,3	60.000	59,9		
36	20A38 VIP3	61.667	166,4	62.222	154,0	61.667	57,7	61.111	31,7		
37	NK 467 VIP3	57.222	166,2	57.222	148,2	57.778	66,9	55.000	34,2		
38	NK 506 VIP3	56.667	182,4	57.222	169,8	57.778	61,6	56.111	29,5		
39	NK 509 VIP3	57.222	200,1	61.667	177,5	57.778	70,2	59.444	43,4		
40	TMG 987 VIP3	57.222	187,8	53.333	161,2	56.111	78,8	53.889	58,3		

Nas **Figuras 5** e **6** estão apresentadas as produtividades dos híbridos de milho em ordem decrescente de produtividade. No experimento de competição de híbridos semeado em solo de textura média – 1ª época a produtividade variou de 158,0 sc/ha (B 2612 PWU) a 200,1 sc/ha (NK 509 VIP3). Quando semeado em solo de mesma textura, mas em janela de semeadura mais avançada (2ª época) a produtividade de milho variou de 132,2 sc/ha (FS 615 PWU) a 198,6 sc/ha (MG 540 PWU). Em solo de textura arenosa, na 1ª época de semeadura a produtividade variou de 49,4 sc/ha (B 2800 VYHR) a 116,7 sc/ha (FS 564 PWU) e na 2ª época de semeadura a produtividade variou de 29,5 sc/ha (NK 506 VIP3) a 99,1 sc/ha (FS 533 PWU).

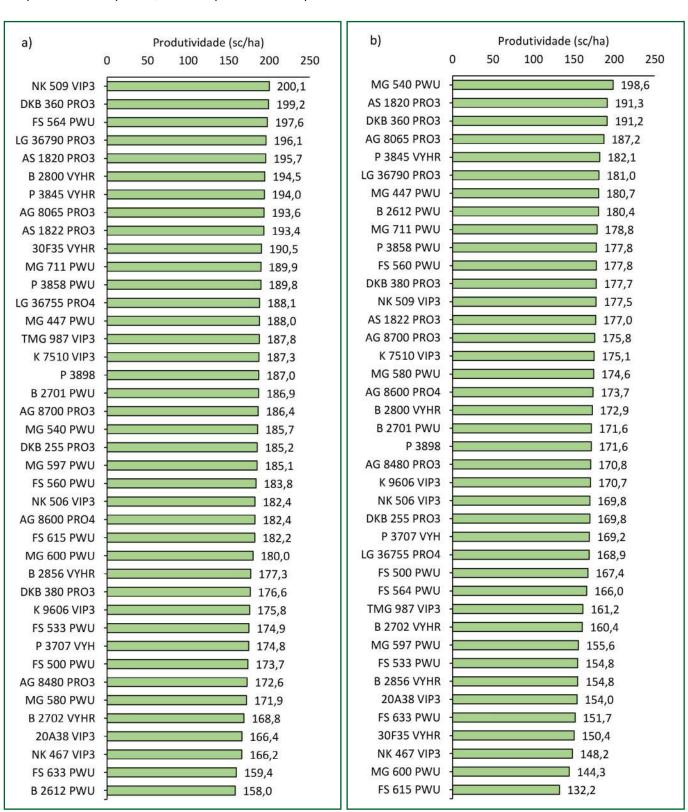


Figura 5. Produtividade dos híbridos de milho cultivados na 1ª (a) e 2ª época de semeadura (b) em solo de textura média. CTECNO/Campo Novo do Parecis-MT, safra 2022/23.

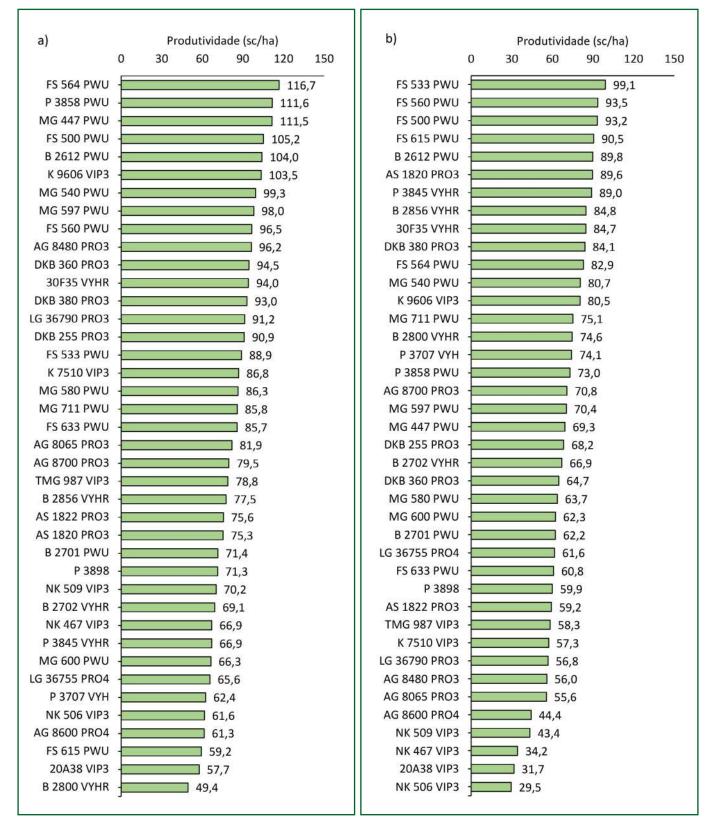


Figura 6. Produtividade dos híbridos de milho cultivados na 1ª (a) e 2ª época de semeadura (b) em solo de textura arenosa. CTECNO/Campo Novo do Parecis-MT, safra 2022/23.

Embora a condição climática da safra 2022/23 tenha sido favorável ao cultivo de milho na segunda safra, o elevado volume de chuvas acumulado observado durante o período de condução dos ensaios promoveu a lixiviação de nutrientes, especialmente potássio (K) e enxofre (S), nos ensaios cultivados em solo de textura arenosa, especialmente na 1ª época de semeadura, onde o volume de chuvas acumulado foi maior. No experimento realizado em solo de textura arenosa foram observados sintomas de clorose internerval nas folhas (**Figura 7**).

Figura 7. Sintomas de deficiência nutricional observados nos experimentos cultivados em solo de textura arenosa no Centro Tecnológico Aprosoja MT – CTECNO, em Campo Novo do Parecis/MT, safra 2022/23.

Com o objetivo de investigar estes sintomas, no experimento cultivado em solo de textura arenosa – 1ª época de semeadura, nos híbridos com maior intensidade destes sintomas, foram coletadas amostras de folhas para análise foliar. Nos mesmos híbridos cultivados em solo de textura média – 1ª época, onde não eram observados sintomas visuais de deficiência, também foram coletadas folhas para comparação. Os resultados podem ser observados na **Tabela 7**.

Tabela 7. Teores foliares de nutrientes em híbridos de milho cultivados dentro da mesma área experimental e na mesma data de semeadura, com presença (experimento em solo de textura arenosa) e ausência (experimento em solo de textura média) de sintomas visuais de deficiência de nutrientes e valores de referência para teor foliar de nutrientes em milho. CTECNO/Campo Novo do Parecis-MT, safra 2022/23.

	·	N	Р	K	Ca	Mg	S	Mn
Híbrido	Sintomas		· 					mg/kg
I I (la vital a d	Presente	29,2	2,9	18,0	1,7	1,4	0,8	26,4
Híbrido 1	Ausente	32,7	3,0	27,8	3,9	1,4	2,2	37,6
Híbrido 2	Presente	29,9	2,8	16,2	1,4	1,2	0,8	26,1
HIDRIGO 2	Ausente	34,3	2,7	23,6	4,1	1,1	1,9	25,6
Híbrido 3	Presente	32,4	2,9	15,8	1,5	1,3	0,9	22,5
Hibrido 3	Ausente	27,7	2,2	29,8	3,8	1,1	1,4	31,5
Híbrido 4	Presente	36,5	3,5	15,2	1,4	1,2	0,9	21,4
HIBRIGO 4	Ausente	31,2	2,5	24,4	3,7	1,2	1,7	28,6
Uíbrido E	Presente	30,7	3,1	17,6	1,2	1,1	0,8	20,2
Híbrido 5	Ausente	33,4	2,4	24,2	4,2	1,3	1,9	26,7
Valores de referência (28-35	1,8-3,0	13-30	2,5-10	1,5-5	1,4-3,0	20-200	

Os resultados das análises foliares demonstram teores consideravelmente menores de cálcio (Ca) e S nas amostras coletadas com presença dos sintomas de deficiência quando comparado as amostras com ausência de sintomas. Entretanto, a análise de solo indica que os teores disponíveis de Ca do solo são considerados adequados (> 1,5 cmol_c/dm³) de acordo com Sousa e Lobato (2004) e os sintomas observados não são compatíveis com sintomas de deficiência de Ca.

Os sintomas de deficiência visual tradicionalmente descritos para os nutrientes magnésio (Mg) e manganês (Mn) são de clorose internerval com início nas folhas velhas e folhas novas, respectivamente. Porém, os resultados das análises foliares apresentados na **Tabela 7** não demonstram haver diferenças numéricas quanto a estes nutrientes, e os teores foliares de Mn encontrados estão dentro da faixa de suficiência considerando os valores de referência citados na tabela. Os teores de Mg em todos os híbridos citados na **Tabela 7** e nos dois ambientes, estão abaixo dos níveis de referência. Porém, além dos teores de Ca, os teores de S nos híbridos cultivados em solo de textura arenosa são numericamente inferiores aos resultados quando cultivados em solos de textura média. No entanto, estes sintomas observados a campo também diferem das descrições tradicionalmente relatadas como deficiência de S.

As condições meteorológicas durante o cultivo do milho (**Figura 1**) demonstram a ocorrência de alto volume de chuvas, especialmente na 1ª época de semeadura, contribuindo provavelmente para a lixiviação de parte do S no solo, principalmente nos experimentos conduzidos em solos arenosos, justamente onde há menor teor de matéria orgânica do solo (MOS), onde aproximadamente 90% do S presente no solo está na forma orgânica. Já em solo de textura média, como o impacto de lixiviação de nutrientes é menor, o fertilizante sulfatado adicionado, associado ao maior teor de MOS, provavelmente foi capaz de suprir a necessidade da cultura.

Na **Figura 8** estão apresentados os resultados de produtividade média dos híbridos de milho cultivados nos dois ambientes (solo de textura média e arenosa) e nas duas épocas de semeadura. Podese observar que na mesma época de semeadura a produtividade média do milho cultivado em solo de textura média foi de aproximadamente 100 sc/ha a mais que aquele cultivado em solo de textura arenosa. Deve-se considerar que o nível de investimento foi semelhante entre os experimentos realizados e as variações de produtividade observadas são exclusivamente do ambiente de produção.

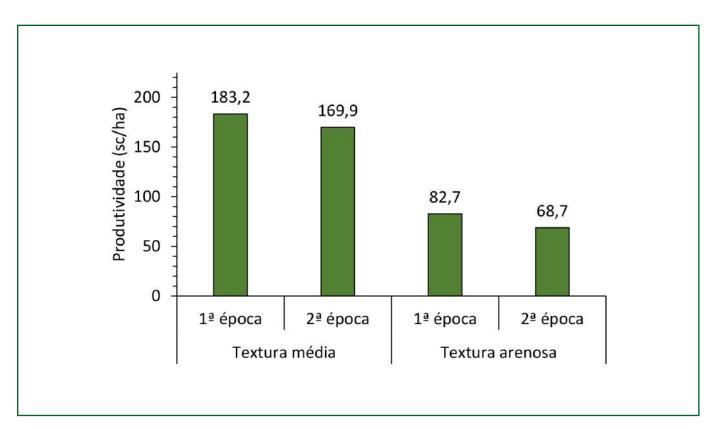


Figura 8. Produtividade média dos híbridos de milho cultivados em dois ambientes (solo de textura média e arenosa) e duas épocas de semeadura. CTECNO/Campo Novo do Parecis-MT, safra 2022/23.

Mesmo na 1ª época de semeadura, a produtividade dos híbridos de milho cultivados em solo de textura arenosa não conseguiu superar aquela produtividade observada em solo de textura média, mesmo na 2ª época de semeadura. Considerando as produtividades obtidas em todos os experimentos é possível inferir que a condição meteorológica foi favorável para cultivo de milho segunda safra, quando semeado em solo de textura média, uma vez que a disponibilidade hídrica é um dos fatores mais importantes no cultivo de milho após soja no mesmo ano agrícola.

Os resultados apresentados na **Tabela 4** demonstram que o crescimento do milho quando cultivado em solo arenoso foi menor que aquele cultivado em solo de textura média, independente da época de semeadura. Estes resultados estão associados a dinâmica da água em cada condição de solo destes experimentos e a condição nutricional demonstrada na **Tabela 7**.

É importante destacar que as adubações realizadas foram iguais nos experimentos cultivados em solo de textura média e arenosa, mas apenas o milho cultivado em solo de textura arenosa apresentou sintomas de deficiência nutricional. Estes resultados, associados a resultados de outros experimentos conduzidos no CTECNO Parecis nesta safra, indicam que para o cultivo de milho em solos de textura arenosa deve-se ter consciência das restrições de cultivo de milho segunda safra neste ambiente. Mas, caso seja cultivado milho segunda safra nestas condições, as adubações devem ser feitas de forma parcelada ou pelo uso de fertilizantes de liberação mais gradual, visando reduzir o potencial de perdas de nutrientes, bem como maior aporte de nutrientes deve ser realizado, porém, o risco continua elevado.

Dessa forma, os resultados obtidos nestes experimentos permitem concluir que as informações mais importantes deste boletim técnico são: 1 – necessidade de considerar a aptidão das áreas para cultivo de milho segunda safra; 2 – impacto das datas de semeadura do milho segunda safra; 3 – diferenças entre híbridos quanto a produtividade e aptidão em diferentes ambientes.

Logo após a colheita, os híbridos de milho foram submetidos a classificação de grãos. Os resultados referentes a porcentagem de grãos avariados estão apresentados na **Tabela 8**. Nenhum dos híbridos estudados ultrapassou o limite de 6% de grãos avariados de acordo com a Instrução Normativa 60/2011. As variações observadas entre híbridos de milho podem estar relacionadas a características dos materiais, bem como às condições ambientais.

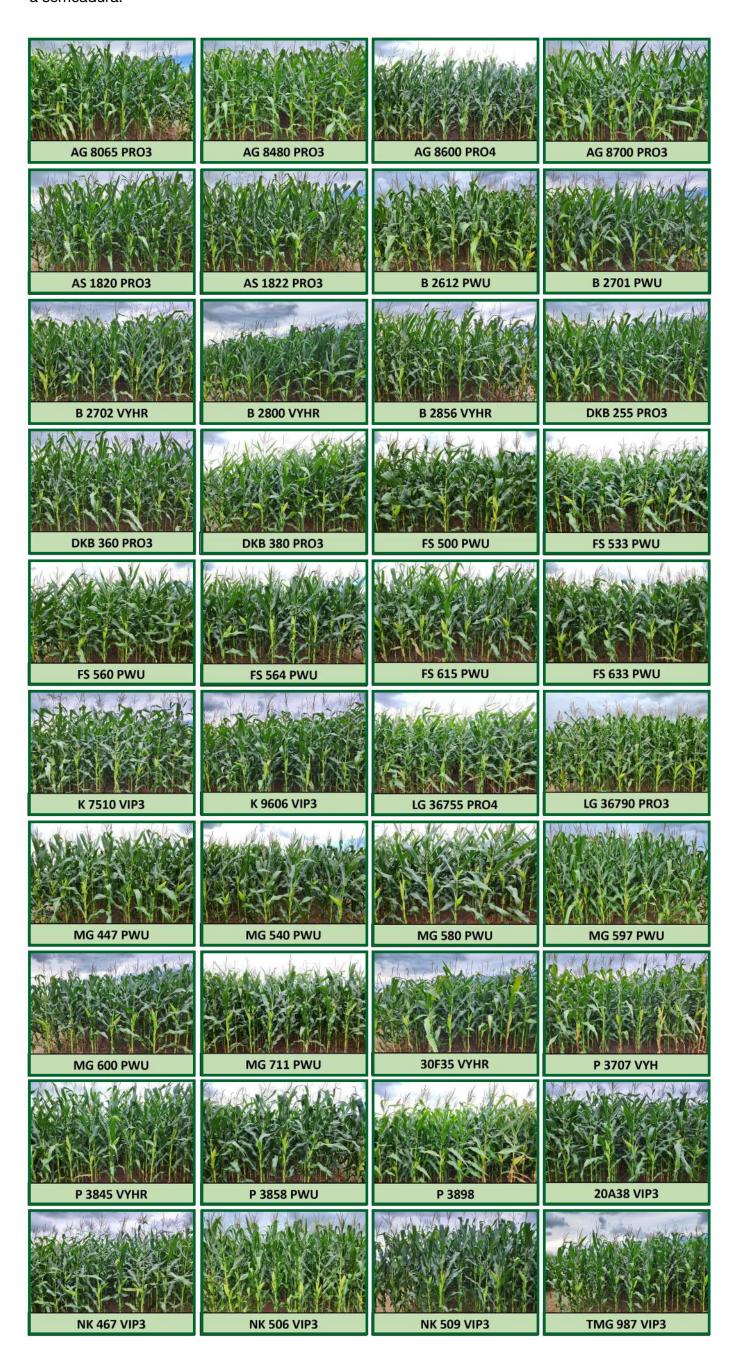
Tabela 8. Percentagem de grãos avariados nos híbridos de milho cultivados em solo de textura média e arenosa em duas épocas de semeadura. CTECNO/Campo Novo do Parecis-MT, safra 2022/23.

NIO	ما المانية المانية	Solo de tex	tura média	Solo de textura arenosa			
N°	Híbrido	1ª época	2ª época	1ª época	2ª época		
			Grãos avar	iados (%)			
1	AG 8065 PRO3	2,70	2,00	1,80	2,30		
2	AG 8480 PRO3	2,90	2,00	2,00	2,20		
3	AG 8600 PRO4	2,50	2,80	2,00	2,20		
4	AG 8700 PRO3	3,20	2,40	2,20	2,00		
5	AS 1820 PRO3	4,30	2,30	2,00	2,00		
6	AS 1822 PRO3	2,70	2,70	1,70	2,20		
7	B 2612 PWU	3,30	2,90	1,90	2,80		
8	B 2701 PWU	3,80	2,80	2,80	1,90		
9	B 2702 VYHR	2,80	2,00	2,20	1,70		
10	B 2800 VYHR	2,40	2,00	2,80	2,80		
11	B 2856 VYHR	3,00	2,40	5,60	2,30		
12	DKB 255 PRO3	5,40	2,70	2,40	2,00		
13	DKB 360 PRO3	3,20	5,50	2,20	1,80		
14	DKB 380 PRO3	2,80	2,20	2,00	2,90		
15	FS 500 PWU	2,60	2,00	2,00	2,00		
16	FS 533 PWU	3,00	3,00	2,40	2,30		
17	FS 560 PWU	5,20	2,30	4,80	2,60		
18	FS 564 PWU	2,90	2,70	2,20	2,00		
19	FS 615 PWU	3,40	2,80	2,40	3,00		
20	FS 633 PWU	2,80	2,20	2,00	3,30		
21	K 7510 VIP3	2,40	2,80	2,20	3,00		
22	K 9606 VIP3	3,00	2,30	2,50	1,90		
23	LG 36755 PRO4	2,20	2,30	1,80	2,30		
24	LG 36790 PRO3	3,10	2,70	3,00	2,80		
25	MG 447 PWU	2,80	2,60	2,10	2,80		
26	MG 540 PWU	3,00	2,90	3,10	2,60		
27	MG 580 PWU	2,00	5,00	2,00	2,80		
28	MG 597 PWU	2,90	2,80	2,40	2,80		
29	MG 600 PWU	2,30	2,30	2,10	2,40		
30	MG 711 PWU	2,20	3,00	2,60	3,00		
31	30F35 VYHR	3,00	2,80	2,50	3,50		
32	P 3707 VYH	2,50	2,30	2,00	2,70		
33	P 3845 VYHR	3,40	3,00	2,00	3,20		
34	P 3858 PWU	4,50	2,50	2,10	3,00		
35	P 3898	2,70	3,00	1,80	2,00		
36	20A38 VIP3	2,70	5,20	2,00	2,40		
37	NK 467 VIP3	2,60	2,00	2,50	2,80		
38	NK 506 VIP3	3,20	2,90	3,80	5,00		
39	NK 509 VIP3	3,20	2,50	2,20	2,90		
40	TMG 987 VIP3	2,80	2,80	2,00	4,60		

4. CONSIDERAÇÕES FINAIS

A escolha do híbrido de milho deve considerar os testes regionais e a repetibilidade dos resultados. Ensaios de híbridos servem para direcionamento de potencial produtivo, no entanto, devem ser considerados com cautela, pois eles podem apresentar comportamentos diferentes em cada ambiente e manejo. No momento da escolha do híbrido de milho é fundamental considerar os diferentes ambientes de produção dentro da propriedade e até mesmo dentro de cada lavoura.

Foi observado variações na incidência de enfezamento em função dos híbridos. Além disso, foi observado aumento da incidência de enfezamento com o avançar da época de semeadura devido ao aumento da pressão de cigarrinha. É importante destacar que a avaliação da incidência de enfezamento é realizada por meio da identificação dos sintomas visuais do complexo de enfezamento. Entretanto, alguns híbridos podem não expressar sintomas visuais, mas apresentar redução de produtividade, enquanto outros podem expressar sintomas, mas não reduzir produtividade.


A condição meteorológica da segunda safra 2022/23 possibilitou a obtenção de altas produtividades de milho quando cultivado em solo de textura média (32% de argila). Nas mesmas condições climáticas e de adubação, os resultados obtidos nos experimentos cultivados em solo de textura arenosa (10% de argila) deixam claro a necessidade de avaliar a aptidão das áreas para cultivo de milho. Foi possível observar que mesmo com um nível de investimento semelhante entre os experimentos avaliados, os híbridos de milho foram mais produtivos quando cultivado em solo de textura média, com produtividade média superior a 100 sc/ha quando comparado ao solo de textura arenosa. Dessa forma, as variações de produtividade observadas são exclusivamente do ambiente de produção.

Os resultados obtidos nestes experimentos e apresentados neste boletim técnico indicam que solos arenosos apresentam limitações acentuadas para a produção de milho segunda safra, independente do híbrido cultivado. Este fato é ainda mais relevante quando os preços pagos ao produtor pelo milho produzido são baixos e/ou o custo de produção for elevado. Além disso, os resultados demonstram que há diferenças acentuadas entre híbridos de milho quanto ao potencial produtivo.

ASPECTO VISUAL DOS HÍBRIDOS DE MILHO

Relação de fotos dos híbridos de milho cultivados em solo de textura média, semeados no dia 01/02/2023 (1ª época). As fotos de todos os híbridos foram tiradas no dia 27/04/2023, 85 dias após a semeadura.

Relação de fotos dos híbridos de milho cultivados em solo de textura arenosa, semeados no dia 02/02/2023 (1ª época). As fotos de todos os híbridos foram tiradas no dia 27/04/2023, 84 dias após a semeadura.

Relação de fotos dos híbridos de milho cultivados em solo de textura média, semeados no dia 23/02/2023 (2ª época). As fotos de todos os híbridos foram tiradas no dia 09/05/2023, 75 dias após a semeadura.

Relação de fotos dos híbridos de milho cultivados em solo de textura arenosa, semeados no dia 22/02/2023 (2ª época). As fotos de todos os híbridos foram tiradas no dia 08/05/2023, 75 dias após a semeadura.

REFERÊNCIAS

IMEA. Instituto Mato-grossense de Economia Agropecuária. Apresentação Geral de Mato Grosso. Cuiabá - Mato Grosso – Acessado em 26/05/2023.

SOUSA, D. M. G.; LOBATO, E. Cerrado: correção do solo e adubação. 2. ed. 2004.

Associação dos Produtores de Soja e Milho do Estado de Mato Grosso

Rua Engenheiro Edgard Prado Arze, n°1.777 Edifício Cloves Vettorato, CPA CEP 78.049-932 Cuiabá-MT

EDIÇÃO 03

Agosto 2023

DIRETORIA - GESTÃO 2021/2023

PRESIDENTE

Fernando Cadore

VICE-PRESIDENTE

Lucas Luis Costa Beber

COORDENADOR DA COMISSÃO DE DEFESA AGRÍCOLA

Fernando Ferri

VICE-COORDENADOR DA COMISSÃO DE DEFESA AGRÍCOLA

Jorge Diego Oliveira Santos Giacomelli

GERENTE ADMINISTRATIVO – IAGRO-MT

Alexandre Andrade Zamarioli

GERENTE DA COMISSÃO DE DEFESA AGRÍCOLA

Jerusa Rech

É permitida a reprodução deste Boletim Técnico, desde que citada a fonte.

Para mais informações do conteúdo dessa publicação:

65 3644-4215

defesa.agricola@aprosoja.com.br